Deep Learning Based Classification of Military Cartridge Cases and Defect Segmentation
Author:
Affiliation:
1. Department of Computer Engineering, Ankara University, Ankara, Turkey
2. Department of Computer Engineering, National Defense University, Ankara, Turkey
Funder
Ministry of Science, Industry and Technology of Türkiye
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/9668973/09830740.pdf?arnumber=9830740
Reference68 articles.
1. Efficient surface defect detection using self-supervised learning strategy and segmentation network
2. A nondestructive automatic defect detection method with pixelwise segmentation
3. A layer-wise multi-defect detection system for powder bed monitoring: Lighting strategy for imaging, adaptive segmentation and classification
4. A review on modern defect detection models using DCNNs – Deep convolutional neural networks
5. Visual techniques for defects detection in steel products: A comparative study
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Industrial image anomaly detection based on multi Gaussian discriminant model and robust core set;Measurement Science and Technology;2024-08-14
2. VGGNet Integration for Kidney Tumor Classification;2024 12th International Electrical Engineering Congress (iEECON);2024-03-06
3. A Study on an AI Based Target/Clutter Classification Model of Count-Battery Radar;Journal of the Korean Institute of Industrial Engineers;2024-02-29
4. Scratch Defects Detection of Curved Metal Surface Based on Multiple High Frequency Projection and Inverse Transfer Learning;IEEE Transactions on Instrumentation and Measurement;2024
5. A Systematic Literature Review on Artificial Intelligence and Explainable Artificial Intelligence for Visual Quality Assurance in Manufacturing;Electronics;2023-11-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3