Deep Generative Models for Synthetic Data: A Survey
Author:
Affiliation:
1. Department of Marketing, Vienna University of Economics and Business, Vienna, Austria
2. Institute of Data Science, Maastricht University, MD Maastricht, The Netherlands
3. Mostly AI GmbH, Vienna, Austria
Funder
“Information and Communication Technology (ICT) of the Future” Funding Programme of the Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10122524.pdf?arnumber=10122524
Reference96 articles.
1. Deep learning techniques for music generation—A survey;briot;arXiv 1709 01620,2017
2. Urban Traffic Prediction from Mobility Data Using Deep Learning
3. From artificial neural networks to deep learning for music generation: history, concepts and trends
4. Deep generative models of urban mobility;lin;IEEE Trans Intell Transp Syst,2017
5. Click Here for Internet Insight: Advances in Clickstream Data Analysis in Marketing
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Systematic Review of Synthetic Data Generation Techniques Using Generative AI;Electronics;2024-09-04
2. Experience: A Comparative Analysis of Multivariate Time-Series Generative Models: A Case Study on Human Activity Data;Journal of Data and Information Quality;2024-08-20
3. Review of Phonocardiogram Signal Analysis: Insights from the PhysioNet/CinC Challenge 2016 Database;Electronics;2024-08-14
4. Does My Data Fit? Assessing the Compatibility Between New and Existing Data;Companion of the16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems;2024-06-24
5. Towards a Framework for Evaluating Synthetic Surface Gestures;Companion of the16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems;2024-06-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3