Identification of Foliar Disease Regions on Corn Leaves Using SLIC Segmentation and Deep Learning Under Uniform Background and Field Conditions

Author:

Phan Hieu1ORCID,Ahmad Aanis2ORCID,Saraswat Dharmendra3ORCID

Affiliation:

1. Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA

2. Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA

3. Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA

Funder

Purdue University Summer Undergraduate Research Fellowship (SURF) Program, Wabash Heartland Innovation Network

Foundation of Food and Agricultural Research

United States Department of Agriculture (USDA) National Institute of Food and Agriculture Hatch Project

Department of Agricultural and Biological Engineering

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An optimal model for identification and classification of corn leaf disease using hybrid 3D-CNN and LSTM;Biomedical Signal Processing and Control;2024-06

2. Classification of Corn Diseases Using Convolutional Neural Networks and Support Vector Machine;2024 International Conference on Machine Intelligence and Smart Innovation (ICMISI);2024-05-12

3. Maize leaf disease recognition using PRF-SVM integration: a breakthrough technique;Scientific Reports;2024-05-03

4. CSIU-Net+: Pepper and corn leaves classification and severity identification using hybrid optimization;Environmental Research Communications;2024-05-01

5. A systematic review of open data in agriculture;Computers and Electronics in Agriculture;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3