A Novel and Efficient Influence-Seeking Exploration in Deep Multiagent Reinforcement Learning

Author:

Yoo Byunghyun1ORCID,Ningombam Devarani Devi2,Yi Sungwon1,Kim Hyun Woo1,Chung Euisok1,Han Ran1,Song Hwa Jeon1ORCID

Affiliation:

1. Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea

2. Department of Computer Science and Engineering, GITAM University, Visakhapatnam, India

Funder

Electronics and Telecommunications Research Institute

Air Force Office of Scientific Research

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering

Reference34 articles.

1. Deep coordination graphs;böhmer;Proc Int Conf Mach Learn,2020

2. Sampling-Free Epistemic Uncertainty Estimation Using Approximated Variance Propagation

3. Deep recurrent Q-learning for partially observable MDPS;hausknecht;Proc AAAI Fall Symp Sequential Decis Making Intell Agents,2015

4. The Decentralized POMDP Framework

5. Empirical evaluation of gated recurrent neural networks on sequence modeling;chung;Proc NIPS Workshop Deep Learn,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ASN: action semantics network for multiagent reinforcement learning;Autonomous Agents and Multi-Agent Systems;2023-11-10

2. Multi-Domain Active Learning for Multi-Agent Reinforcement Learning;2023 IEEE 2nd International Conference on Industrial Electronics: Developments & Applications (ICIDeA);2023-09-29

3. Performance analysis and comparison of various machine learning algorithms for early stroke prediction;ETRI Journal;2022-12-29

4. A Novel Exploration Technique For Multi-Agent Reinforcement Learning;2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT);2022-10-07

5. Deep Reinforcement Learning Algorithms for Machine-to-Machine Communications: A Review;2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT);2022-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3