A Performance Comparison of Machine Learning Algorithms for Load Forecasting in Smart Grid

Author:

Alquthami Thamer1ORCID,Zulfiqar Muhammad2,Kamran Muhammad1,Milyani Ahmad H.1ORCID,Rasheed Muhammad Babar3ORCID

Affiliation:

1. Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah, Saudi Arabia

2. Department of Electrical Engineering, University of Engineering and Technology Lahore, Lahore, Pakistan

3. Department of Electronics and Electrical Systems, The University of Lahore, Lahore, Pakistan

Funder

Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia

European Union Horizon 2020 Research and Innovation Program through the Marie Sklodowska-Curie

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering

Reference72 articles.

1. Artificial neural network approach for short term load forecasting for Illam region;hayati;World Acad Sci Eng Technol,2007

2. Making smart grids smarter by using machine learning;pisica;Proc 46th Int Univ Power Eng Conf (UPEC),2011

3. Towards Concise Models of Grid Stability

4. A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization

5. Hybrid Improved Differential Evolution and Wavelet Neural Network with load forecasting problem of air conditioning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3