Detecting Severity Levels of Cucumber Leaf Spot Disease using ResNext Deep Learning Model: A Digital Image Analysis Approach
Author:
Affiliation:
1. Chitkara University Institute of Engineering and Technology, Chitkara University,Punjab,India
2. Graphic Era Hill University,Dehradun
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10169136/10169900/10170539.pdf?arnumber=10170539
Reference16 articles.
1. EFDet: An efficient detection method for cucumber disease under natural complex environments
2. Multiclass Cucumber Leaf Diseases Recognition Using Best Feature Selection
3. Deep Learning Based Multi-Classification Model for Rice Disease Detection
4. ADDLight: An Energy-Saving Adder Neural Network for Cucumber Disease Classification
5. Deep Learning-Based Segmentation and Quantification of Cucumber Powdery Mildew Using Convolutional Neural Network
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Learning Meets Support Vector Machines: An Effective Hybrid Model for Banana Leaf Wilt Disease Severity Assessment;2024 2nd International Conference on Disruptive Technologies (ICDT);2024-03-15
2. Evaluating the Effects of Climate Change on Agriculture: Deep Learning-Based Predictive Pest and Disease Severity Classification;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09
3. Elevating Crop Protection: Vision Transformer Models for Brassica Black Rot Detection;2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2024-01-24
4. Towards Sustainable Mango Cultivation: Automated Severity Classification of Mango Rust Disease using CNN-SVM;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11
5. Deep Insights into Mango Scab: An AI-Powered Approach for Detection and Classification;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3