A Review of Power Equipment Defect Detection Based On Deep Learning

Author:

Wang Jingdong1,Cheng Zhu1,Meng Fanqi1

Affiliation:

1. Northeast Electric Power University,School of Computer Science,Jilin,China

Publisher

IEEE

Reference25 articles.

1. Comparison of motor fault diagnosis performance using RNN and K-means for data with disturbance[C]//2020 20th International Conference on Control, Automation and Systems (ICCAS);choi;IEEE,0

2. Research on infrared diagnosis technology of substation equipment based on deep learning [D];tongfan;North China Electric Power University,2021

3. Stable anti-noise rolling bearing fault diagnosis based on convolutional neural network and bidirectional long short-term memory [J];xiaolei;Journal of Jilin University (Engineering Science Edition),2022

4. Electric power equipment defect text mining based on BiLSTM-Attention neural network [J];bin;Proceedings of the CSEE,2020

5. Improved deep learning to optimize power equipment defect image recognition [J];yanliang;Mechanical design and manufacturing,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3