Finite-Time Synchronization and Energy Consumption Prediction for Multilayer Fractional-Order Networks
Author:
Affiliation:
1. College of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, China
2. School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, SA, Australia
Funder
Natural Science Foundation of Shanghai
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/8920/10138208/10006396.pdf?arnumber=10006396
Reference22 articles.
1. Event-Triggered Adaptive Neural Control for Fractional-Order Nonlinear Systems Based on Finite-Time Scheme
2. A modified fractional order generalized bio-thermoelastic theory with temperature-dependent thermal material properties
3. Finite-Time Synchronization of Memristive Neural Networks With Fractional-Order
4. Finite-time passivity for coupled fractional-order neural networks with multistate or multiderivative couplings;liu;IEEE Trans Neural Netw Learn Syst,2022
5. Finite-time quasi-synchronization of stochastic multilayer networks with energy consumption estimation
Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fixed-time synchronization of interconnected memristive neural networks with energy consumption via switched control;Neurocomputing;2024-12
2. Stochastic configuring networks based adaptive sliding mode control strategy to improving stability of SG-VSG paralleled microgrid;International Journal of Electrical Power & Energy Systems;2024-10
3. Neural network energy management strategy for plug-in hybrid electric combine harvesters based on quasi-periodic samples;Engineering Applications of Artificial Intelligence;2024-10
4. Distributed secondary control for DC microgrid under the adaptive event-triggered protocol;Transactions of the Institute of Measurement and Control;2024-08-24
5. Fixed-Time Synchronization and Energy Consumption Prediction of Interconnected Memristive Neural Networks with Discontinuous Activation Functions;Circuits, Systems, and Signal Processing;2024-08-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3