A data-driven Model for Fault Diagnosis of Induction Motor for Electric Powertrain
Author:
Affiliation:
1. Green Tech Institute Mohammed VI Polytechnic University,Benguerir,Morocco
2. Green Tech Institute, UM6P,Benguerir Hassan I University,Settat,Morocco
3. Green Tech Institute, UM6P,Benguerir Hassan II University of Casablanca,Morocco
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9842860/9842863/09843046.pdf?arnumber=9843046
Reference37 articles.
1. Experimental database for detecting and diagnosing rotor broken bar in a three-phase induction motor;maciejewski,2020
2. Role of artificial intelligence in rotor fault diagnosis: a comprehensive review
3. Modelling of shaft unbalance: Modelling a multi discs rotor using K-Nearest Neighbor and Decision Tree Algorithms
4. Multi-fault classification based on support vector machine trained by chaos particle swarm optimization
5. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Revolutionizing smart grid-ready management systems: A holistic framework for optimal grid reliability;Sustainable Energy, Grids and Networks;2024-09
2. Enhancing Electric Vehicle Diagnostics Through Constant Speed Subrange Detection for Noise-Reduced Analysis;2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON);2024-06-25
3. Data-driven based Power Quality Disturbance Analysis for Improved Reliability in Smart Grids;2024 6th Global Power, Energy and Communication Conference (GPECOM);2024-06-04
4. Diagnostic and Prognostic Health Management of Electric Vehicle: Bridging the Skills Gap in EV Maintenance with Intuitive 3D Interactive Solutions;2024 6th Global Power, Energy and Communication Conference (GPECOM);2024-06-04
5. Scalable Compositional Digital Twin-Based Monitoring System for Production Management: Design and Development in an Experimental Open-Pit Mine;Designs;2024-05-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3