Anomaly prediction in network traffic using adaptive Wiener filtering and ARMA modeling

Author:

Celenk Mehmet,Conley Thomas,Graham James,Willis John

Publisher

IEEE

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of Machine-Learning-Based Traffic Prediction Algorithms for Real Access/Metro Network Traffic;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

2. Spatiotemporal-Enhanced Recurrent Neural Network for Network Traffic Prediction;2023 IEEE Symposium on Computers and Communications (ISCC);2023-07-09

3. Deep Learning Based Traffic Prediction Method for Digital Twin Network;Cognitive Computation;2023-05-27

4. Building a Forecast Using a Linear Prediction Filter for the Purpose of Detecting Anomalies in the Signals of Automated Process Control Systems;2023 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2023-05-15

5. Proposal and comparison of network anomaly detection based on long-memory statistical models;Logic Journal of IGPL;2016-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3