Stealthy and Effective Physical Adversarial Attacks in Autonomous Driving

Author:

Zhou Man1ORCID,Zhou Wenyu1ORCID,Huang Jie1,Yang Junhui1,Du Minxin2,Li Qi3ORCID

Affiliation:

1. Hubei Key Laboratory of Distributed System Security, Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

2. Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

3. Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China

Funder

National Natural Science Foundation of China

NSFC

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Reference55 articles.

1. Fooling the Eyes of Autonomous Vehicles: Robust Physical Adversarial Examples Against Traffic Sign Recognition Systems

2. SLAP: Improving physical adversarial examples with short-lived adversarial perturbations;Lovisotto

3. Dirty road can attack: Security of deep learning based automated lane centering under physical-world attack;Sato

4. Shadows can be Dangerous: Stealthy and Effective Physical-world Adversarial Attack by Natural Phenomenon

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3