Exudate Detection with Improved U-Net Using Fundus Images
Author:
Affiliation:
1. National Institute of Technology, Silchar,Bio-Medical Imaging Laboratory (BIOMIL),Dept. of ECE,Silchar,Assam,India
2. Silchar Medical College and Hospital,Department of Ophthalmology,Silchar,Assam,India
Funder
Science and Engineering Research Board
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9751776/9751720/09752239.pdf?arnumber=9752239
Reference24 articles.
1. Detection of hard exudates in retinal fundus images using deep learning;benzamin;2018 Joint 7th International Conference on Informatics Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging Vision & Pattern Recognition (icIVPR),2018
2. Exudate segmentation using fully convolutional neural networks and inception modules
3. An Enhanced Residual U-Net for Microaneurysms and Exudates Segmentation in Fundus Images
4. Modified U-Net architecture for semantic segmentation of diabetic retinopathy images
5. U-net Based Method for Automatic Hard Exudates Segmentation in Fundus Images Using Inception Module and Residual Connection
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimal hybrid feature selection technique for diabetic retinopathy grading using fundus images;Sādhanā;2023-06-12
2. DRFL: Federated Learning in Diabetic Retinopathy Grading Using Fundus Images;IEEE Transactions on Parallel and Distributed Systems;2023-06
3. Identification of retinal diseases based on retinal blood vessel segmentation using Dagum PDF and feature-based machine learning;The Imaging Science Journal;2023-02-28
4. DR-FL: A Novel Diabetic Retinopathy Grading with Federated Learning Using Fundus Images;Healthcare Research and Related Technologies;2023
5. AMDNet: Age-related Macular Degeneration diagnosis through retinal Fundus Images using Lightweight Convolutional Neural Network;2022 IEEE Silchar Subsection Conference (SILCON);2022-11-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3