Design and Characterization of the Fully Metallic Gap Waveguide-Based Frequency Selective Radome for Millimeter Wave Fixed Beam Array Antenna
Author:
Affiliation:
1. Department of Electrical Engineering, University of Twente, Enschede, The Netherlands
2. Department of Electrical Engineering, Gapwaves AB, Gothernburg, Sweden
3. Department of Electrical Engineering, University of Twente, Enschede, Netherlands
Funder
European Union’s Horizon 2020 Research and Innovation Programme through the Marie Sklodowska-Curie
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/8/10021137/09928536.pdf?arnumber=9928536
Reference24 articles.
1. Compact Dual Microwave/Millimeter-Wave Planar Shared-Aperture Antenna for Vehicle-to-Vehicle/5G Communications
2. A 27–31-GHz 1024-Element Ka-Band SATCOM Phased-Array Transmitter With 49.5-dBW Peak EIRP, 1-dB AR, and ±70° Beam Scanning
3. Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology
4. Design and Experimental Verification of Compact Frequency-Selective Surface With Quasi-Elliptic Bandpass Response
5. Frequency Selective Surface With Miniaturized Elements Based on Quarter-Mode Substrate Integrated Waveguide Cavity With Two Poles
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Wideband 2×2 antenna-in-package based on magneto-electric dipole array antenna for 5G mmWave applications;Frontiers in Antennas and Propagation;2024-08-20
2. Wide‐angle band‐pass FSS with high‐frequency selectivity based on SIW cavity technology;Microwave and Optical Technology Letters;2024-06-30
3. A broadband second-order bandpass frequency selective surface for microwave and millimeter wave application;Scientific Reports;2024-05-27
4. AlN high temperature co-fired ceramics with enhanced frequency selective transmission from X to Ku bands at elevated temperature;Journal of Alloys and Compounds;2024-01
5. Design and Characterization of Intelligent Devices and Environments for Wireless Communications;2023 IEEE International Symposium On Antennas And Propagation (ISAP);2023-10-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3