Fully Convolutional Network-Based Self-Supervised Learning for Semantic Segmentation

Author:

Yang Zhengeng1ORCID,Yu Hongshan1ORCID,He Yong1ORCID,Sun Wei1ORCID,Mao Zhi-Hong2ORCID,Mian Ajmal3ORCID

Affiliation:

1. National Engineering Laboratory for Robot Visual Perception and Control Technology, College of Electrical and Information Engineering, Hunan University, Changsha 410082, China.

2. Department of Electrical and Computer Engineering and the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA.

3. Department of Computer Science, The University of Western Australia, Perth, WA 6009, Australia.

Funder

National Natural Science Foundation of China

Project of Science Fund for Distinguished Young Scholars of Hunan Province

Key Research and Development Project of Science and Technology Plan of Hunan Province

China Postdoctoral Science Foundation

Project of Talent Innovation and Sharing Alliance of Quanzhou City

Australian Research Council Future Fellowship Award funded by the Australian Government

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Domain-Invariant Prototypes for Semantic Segmentation;IEEE Transactions on Circuits and Systems for Video Technology;2024-08

2. Kernel Masked Image Modeling Through the Lens of Theoretical Understanding;IEEE Transactions on Neural Networks and Learning Systems;2024

3. Cross-Scene Building Identification Based on Dual-Stream Neural Network and Efficient Channel Attention Mechanism;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. Hybrid Gromov–Wasserstein Embedding for Capsule Learning;IEEE Transactions on Neural Networks and Learning Systems;2024

5. Research progress on ocular complications caused by type 2 diabetes mellitus and the function of tears and blepharons;Open Life Sciences;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3