Data-driven Approaches Predict Hourly Electricity Demand Profiles at Industry and City-level
Author:
Affiliation:
1. Marketing Service Center State Grid Fujian,Fuzhou,China
2. Electric Power Co.Ltd State Grid Fujian,Fuzhou,China
3. College of Energy Xiamen University,Xiamen,China
Funder
Fundamental Research Funds for the Central Universities
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10135545/10135141/10135675.pdf?arnumber=10135675
Reference11 articles.
1. Long Short-Term Memory
2. Regression Model-Based Short-Term Load Forecasting for University Campus Load
3. Framewise phoneme classification with bidirectional LSTM and other neural network architectures
4. Day-Ahead Short-Term Load Forecasting for Holidays Based on Modification of Similar Days’ Load Profiles
5. Short-Term Load Forecasting of Smart Grid Based on Load Spatial-Temporal Distribution
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3