Imputation of Missing Values in Time Series Using an Adaptive-Learned Median-Filled Deep Autoencoder
Author:
Affiliation:
1. School of Automation, Central South University, Changsha, China
2. Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Science and Technology Innovation Program of Hunan Province in China
China Scholarship Council
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Human-Computer Interaction,Information Systems,Control and Systems Engineering,Software
Link
http://xplorestaging.ieee.org/ielx7/6221036/10016773/09768200.pdf?arnumber=9768200
Reference34 articles.
1. Establishing strong imputation performance of a denoising autoencoder in a wide range of missing data problems
2. GMM and optimal principal components-based Bayesian method for multimode fault diagnosis
3. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
4. Fault detection and diagnosis in industrial systems;chiang;Advanced Textbooks in Control and Signal Processing,2000
5. A classification-driven neuron-grouped SAE for feature representation and its application to fault classification in chemical processes
Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel data-characteristic-driven modeling approach for imputing missing value in industrial statistics: A case study of China electricity statistics;Applied Energy;2024-11
2. A new attention-based CNN_GRU model for spatial–temporal PM2.5 prediction;Environmental Science and Pollution Research;2024-08-23
3. Incomplete data evidential classification with inconsistent distribution;Information Sciences;2024-08
4. Mixed-Type Imputation for Missing Data Credal Classification via Quality Matrices;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2024-08
5. Continuous imputation of missing values in time series via Wasserstein generative adversarial imputation networks and variational auto-encoders model;Physica A: Statistical Mechanics and its Applications;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3