DeepLTSC: Long-Tail Service Classification via Integrating Category Attentive Deep Neural Network and Feature Augmentation

Author:

Zou Guobing1ORCID,Yang Song1,Duan Shengyu1,Zhang Bofeng1ORCID,Gan Yanglan2ORCID,Chen Yixin3ORCID

Affiliation:

1. School of Computer Engineering and Science, Shanghai University, Shanghai, China

2. School of Computer Science and Technology, Donghua University, Shanghai, China

3. Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA

Funder

National Natural Science Foundation of China

Shanghai Natural Science Foundation

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Reference36 articles.

1. Empirical evaluation of gated recurrent neural networks on sequence modeling;chung;arXiv 1412 3555,2014

2. Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling;zhou;arXiv 1611 06639,2016

3. Joint Embedding of Words and Labels for Text Classification

4. Hybrid speech recognition with Deep Bidirectional LSTM

5. Visualizing data using t-SNE;maaten;J Mach Learn Res,2008

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relation pruning and discriminative sampling over knowledge graph for long-tail recommendation;Information Sciences;2024-09

2. Graph structure estimation neural network-based service classification;International Journal of Web Information Systems;2024-06-24

3. LCPCWSC: a Web service classification approach based on label confusion and priori correction;International Journal of Web Information Systems;2024-02-06

4. Construction and Prediction of a Dynamic Multi-relationship Bipartite Network;Communications in Computer and Information Science;2023-11-27

5. The Face Generation for Emotion Analysis Using Deep Neural Networks;2023 2nd International Conference on Futuristic Technologies (INCOFT);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3