Attribute-Based Zero-Shot Learning for Encrypted Traffic Classification

Author:

Hu Ying1ORCID,Cheng Guang1ORCID,Chen Wenchao1,Jiang Bomiao1

Affiliation:

1. School of Cyber Science and Engineering and the International Governance Research Base of Cyberspace, Jiangsu Ubiquitous Cyber Security Engineering Research Center, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, China

Funder

General Program of the National Natural Science Foundation of China

Foundation of Key Laboratory of National Defense Science and Technology Project

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Reference38 articles.

1. Deep packet: a novel approach for encrypted traffic classification using deep learning

2. Improved training of Wasserstein GANs;gulrajani;Proc Annu Conf Neural Inf Process Syst,2017

3. End-to-end encrypted traffic classification with one-dimensional convolution neural networks

4. DeViSE: A deep visual-semantic embedding model;frome;Proc 27th Annu Conf Neural Inf Process Syst,2013

5. WENC: HTTPS Encrypted Traffic Classification Using Weighted Ensemble Learning and Markov Chain

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of an enhanced random forest algorithm for identifying encrypted network traffic;EUREKA: Physics and Engineering;2024-09-10

2. A comprehensive review on zero-shot-learning techniques;Intelligent Decision Technologies;2024-06-07

3. A comprehensive review on zero-shot-learning techniques;Intelligent Decision Technologies;2024-04-17

4. Unveiling encrypted traffic types through hierarchical network characteristics;Computers & Security;2024-03

5. DataZoo: Streamlining Traffic Classification Experiments;Proceedings of the 2023 on Explainable and Safety Bounded, Fidelitous, Machine Learning for Networking;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3