Discrete-Time Active Disturbance Rejection Current Control of PM Motor at Low Speed Using Resonant Sliding Mode
Author:
Affiliation:
1. School of Electrical Engineering, Southeast University, Nanjing, China
2. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China
Funder
Joint Research Fund in Astronomy through cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences
Six Talent Peaks Project of Jiangsu Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Transportation,Automotive Engineering
Link
http://xplorestaging.ieee.org/ielx7/6687316/10251026/10043731.pdf?arnumber=10043731
Reference34 articles.
1. A Novel Discrete Compound Integral Terminal Sliding Mode Control with Disturbance Compensation for PMSM Speed System
2. Adaptive Repetitive Learning Control of PMSM Servo Systems with Bounded Nonparametric Uncertainties: Theory and Experiments
3. A Novel Discrete Compound Integral Terminal Sliding Mode Control with Disturbance Compensation for PMSM Speed System
4. An Improved Adaptive Selected Harmonic Elimination Algorithm for Current Measurement Error Correction of PMSMs
5. Model Predictive Direct Speed Control with Finite Control Set of PMSM Drive Systems
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improved Active Disturbance Rejection Control for Permanent Magnet Synchronous Motor;Electronics;2024-07-31
2. Multiple Disturbance Suppression of IPMSM Drives Based on Embedded Discrete-Time Repetitive ADRC With Optimized Parameter Selection;IEEE Transactions on Power Electronics;2024-05
3. Tracking scheme of airborne star tracker based on event-triggered sliding mode control with known input delay;ISA Transactions;2024-04
4. Disturbance-Compensation-Based Predictive Sliding Mode Control for Aero-Engine Networked Systems With Multiple Uncertainties;IEEE Transactions on Automation Science and Engineering;2024
5. Disturbances rejection optimization based on improved two-degree-of-freedom LADRC for permanent magnet synchronous motor systems;Defence Technology;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3