State of Health Estimation of Lithium Iron Phosphate Batteries Based on Degradation Knowledge Transfer Learning
Author:
Affiliation:
1. School of Electrical and Information Engineering, The University of Sydney, Darlington, NSW, Australia
2. School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Transportation,Automotive Engineering
Link
http://xplorestaging.ieee.org/ielx7/6687316/10251026/10029904.pdf?arnumber=10029904
Reference50 articles.
1. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation
2. Lithium-ion Battery Instantaneous Available Power Prediction Using Surface Lithium Concentration of Solid Particles in a Simplified Electrochemical Model
3. A comparative study of equivalent circuit models for Li-ion batteries
4. An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application
5. State of health battery estimator enabling degradation diagnosis: Model and algorithm description
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A label-free battery state of health estimation method based on adversarial multi-domain adaptation network and relaxation voltage;Energy;2024-11
2. Enhancing data-driven-based state of health estimation for diverse battery applications through effective feature construction;Energy;2024-11
3. Machine learning for battery systems applications: Progress, challenges, and opportunities;Journal of Power Sources;2024-05
4. Battery Reliability Assessment in Electric Vehicles: A State-of-the-Art;IEEE Access;2024
5. Advancing Lithium-Ion Battery Health Prognostics With Deep Learning: A Review and Case Study;IEEE Open Journal of Industry Applications;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3