A Local Dynamic Broad Kernel Stationary Subspace Analysis for Monitoring Blast Furnace Ironmaking Process
Author:
Affiliation:
1. State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
2. School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
Funder
Key Programme of the National Natural Science Foundation of China
Social Development Project of Zhejiang Provincial Public Technology Research
Fundamental Research Funds of Zhejiang Sci-Tech University
Open Research Project of the State Key Laboratory of Industrial Control Technology
Zhejiang University
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Information Systems,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/9424/10081096/09857659.pdf?arnumber=9857659
Reference32 articles.
1. Monitoring Nonstationary Processes Using Stationary Subspace Analysis and Fractional Integration Order Estimation
2. Stationary subspace analysis;bünau;Proc Int Conf Independent Compon Anal Signal Separation,0
3. Exponential Stationary Subspace Analysis for Stationary Feature Analytics and Adaptive Nonstationary Process Monitoring
4. Separation of stationary and non-stationary sources with a generalized eigenvalue problem
5. Nonlinear Dynamic Process Monitoring Using Canonical Variate Analysis and Kernel Density Estimations
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Data/mechanism hybrid-driven modeling of blast furnace smelting system and global sequential optimization;Journal of Process Control;2024-07
2. Unveiling dynamics changes: Singular spectrum analysis-based method for detecting concept drift in industrial data streams;Knowledge-Based Systems;2024-06
3. Reordered short-term autocorrelation-driven long-range discriminative convolutional autoencoder for dynamic process monitoring;Journal of Process Control;2024-03
4. Gaussian Mixture Model-Based Wasserstein Stationary Subspace Analysis for Process Monitoring;IEEE Transactions on Instrumentation and Measurement;2024
5. One-Sided Relational Autoencoder With Seasonal-Trend Decomposition to Extract Process Correlations for Molten Iron Quality Prediction;IEEE Transactions on Instrumentation and Measurement;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3