Semisupervised Momentum Prototype Network for Gearbox Fault Diagnosis Under Limited Labeled Samples
Author:
Affiliation:
1. Chongqing University of Posts and Telecommunications, Chongqing, China
2. Chongqing Innovation Center of Industrial Big-Data Company Ltd., Chongqing, China
Funder
National Natural Science Foundation of China
Science and Technology Research Program of Chongqing Municipal Education Commission
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Information Systems,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/9424/9795344/09721655.pdf?arnumber=9721655
Reference42 articles.
1. A relation-based semisupervised method for gearbox fault diagnosis with limited labeled samples;ruan;IEEE Trans Instrum Meas,2021
2. A multi-stage semi-supervised learning approach for intelligent fault diagnosis of rolling bearing using data augmentation and metric learning
3. On the importance of initialization and momentum in deep learning;sutskever;Proc Int Conf Mach Learn,2013
4. Learning to self-train for semi-supervised few-shot classification;sun;Proc Neural Inf Process Syst,2019
5. Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning
Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rotating machinery fault diagnosis based on one-dimensional convolutional neural network and modified multi-scale graph convolutional network under limited labeled data;Engineering Applications of Artificial Intelligence;2024-11
2. A novel dimensional variational prototypical network for industrial few-shot fault diagnosis with unseen faults;Computers in Industry;2024-11
3. Cross-domain few-shot fault diagnosis based on meta-learning and domain adversarial graph convolutional network;Engineering Applications of Artificial Intelligence;2024-10
4. Few-shot fault diagnosis of switch machine based on data fusion and balanced regularized prototypical network;Engineering Applications of Artificial Intelligence;2024-09
5. An Open-set Recognition Method for Ship Radiated Noise Signal Based on Graph Convolutional Neural Network Prototype Learning;Digital Signal Processing;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3