Efficient Federated Meta-Learning Over Multi-Access Wireless Networks

Author:

Yue Sheng1,Ren Ju2ORCID,Xin Jiang1,Zhang Deyu1ORCID,Zhang Yaoxue2,Zhuang Weihua3ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha, China

2. Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China

3. Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

National Key Research and Development Program of China

Natural Science Foundation of Hunan Province, China

Young Talents Plan of Hunan Province of China

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Reference45 articles.

1. Efficient federated meta-learning over multi-access wireless networks;yue;arXiv 2108 06453,2021

2. On the convergence theory of gradient-based model-agnostic meta-learning algorithms;fallah;Proc AISTATS,2020

3. Differentially private meta-learning;li;Proc ICLR,2019

4. CMFL: Mitigating Communication Overhead for Federated Learning

5. Cost-Effective Federated Learning Design

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diffusion-Based Reinforcement Learning for Edge-Enabled AI-Generated Content Services;IEEE Transactions on Mobile Computing;2024-09

2. Robust Federated Learning for Unreliable and Resource-Limited Wireless Networks;IEEE Transactions on Wireless Communications;2024-08

3. FLAMINGO: Adaptive and Resilient Federated Meta-Learning against Adversarial Attacks;2024 IEEE 44th International Conference on Distributed Computing Systems Workshops (ICDCSW);2024-07-23

4. UAV-Assisted Partial Co-Operative NOMA-Based Resource Allocation in CV2X and TinyML-Based Use Case Scenario;IEEE Internet of Things Journal;2024-06-15

5. A Blockchain-Based Reliable Federated Meta-Learning for Metaverse: A Dual Game Framework;IEEE Internet of Things Journal;2024-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3