A Drift-Sensitive Distributed LSTM Method for Short Text Stream Classification
Author:
Affiliation:
1. Key Laboratory of Knowledge Engineering with Big Data, Ministry of Education, School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
2. Tencent Technology Company, Ltd., Shenzhen, China
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Chang Jiang Scholars and Innovative Research Team in the University
Ministry of Education
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Information Systems and Management,Information Systems
Link
http://xplorestaging.ieee.org/ielx7/6687317/10017386/09748034.pdf?arnumber=9748034
Reference49 articles.
1. Short text stream clustering via frequent word pairs and reassignment of outliers to clusters;kumar;Proc ACM Symp Document Eng,2020
2. Short Text Stream Clustering via Frequent Word Pairs and Reassignment of Outliers to Clusters
3. Online Biterm Topic Model based short text stream classification using short text expansion and concept drifting detection
4. An lstm approach to short text sentiment classification with word embeddings;wang;Proc 30th Conf Comput Linguistics Speech Process,2018
5. End-to-end Learning for Short Text Expansion
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Edge-enhanced minimum-margin graph attention network for short text classification;Expert Systems with Applications;2024-10
2. Beyond Word-Based Model Embeddings: Contextualized Representations for Enhanced Social Media Spam Detection;Applied Sciences;2024-03-07
3. LSTMDD: an optimized LSTM-based drift detector for concept drift in dynamic cloud computing;PeerJ Computer Science;2024-01-31
4. A Novel Neural Ensemble Architecture for On-The-Fly Classification of Evolving Text Streams;ACM Transactions on Knowledge Discovery from Data;2023-12-28
5. The load-haul-dump operation cycle recognition based on multi-sensor feature selection and bidirectional long short-term memory network;Measurement and Control;2023-04-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3