Battery Thermal Runaway Fault Prognosis in Electric Vehicles Based on Abnormal Heat Generation and Deep Learning Algorithms
Author:
Affiliation:
1. Collaboration Innovation Center for Electric Vehicles in Beijing, Beijing, China
2. University of the Witwatersrand, Johannesburg, South Africa
3. RWTH Aachen University, Aachen, Germany
Funder
Ministry of Science and Technology of the People’s Republic of China
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/63/9743201/09709666.pdf?arnumber=9709666
Reference72 articles.
1. High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells
2. Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach
3. A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
4. Convolutional LSTM network: A machine learning approach for precipitation nowcasting;shi;Proc 29th Conf Neural Inf Process Syst,2015
5. 3D CNN-Based Speech Emotion Recognition Using K-Means Clustering and Spectrograms
Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An IMFO-LSTM_BIGRU combined network for long-term multiple battery states prediction for electric vehicles;Energy;2024-11
2. Densely-Connected Contrastive Observer for Fault Diagnosis of VRLA Battery in Large Data Center Based on Semisupervised Few-Shot Learning;IEEE Transactions on Power Electronics;2024-10
3. An exhaustive review of battery faults and diagnostic techniques for real-world electric vehicle safety;Journal of Energy Storage;2024-10
4. Temperature field spatiotemporal modeling of lithium-ion battery pack configured sparse temperature sensors;Journal of Energy Storage;2024-09
5. Advancements in battery thermal management for electric vehicles: Types, technologies, and control strategies including deep learning methods;Ain Shams Engineering Journal;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3