Semi-Supervised Building Footprint Generation With Feature and Output Consistency Training
Author:
Affiliation:
1. Chair of Data Science in Earth Observation, Technische Universität München (TUM), Munich, Germany
2. Remote Sensing Technology, Technische Universität München (TUM), Munich, Germany
Funder
Bundesministerium fr Wirtschaft und Energie
Helmholtz Association
Bundesministerium fr Bildung und Forschung
Bavarian State Office for Digitizing Broadband and Survey
H2020 European Research Council
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/9633014/09773314.pdf?arnumber=9773314
Reference70 articles.
1. Representation Learning: A Review and New Perspectives
2. FickleNet: Weakly and Semi-Supervised Semantic Image Segmentation Using Stochastic Inference
3. Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi-Supervised Semantic Segmentation
4. Multi-Task Learning for Segmentation of Building Footprints with Deep Neural Networks
5. HA U-Net: Improved Model for Building Extraction From High Resolution Remote Sensing Imagery
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-Dimensional Manifolds Consistency Regularization for semi-supervised remote sensing semantic segmentation;Knowledge-Based Systems;2024-09
2. Weakly Supervised 3-D Building Reconstruction From Monocular Remote Sensing Images;IEEE Transactions on Geoscience and Remote Sensing;2024
3. G2LDIE: Global-to-Local Dynamic Information Enhancement Framework for Weakly Supervised Building Extraction From Remote Sensing Images;IEEE Transactions on Geoscience and Remote Sensing;2024
4. PixelDINO: Semi-Supervised Semantic Segmentation for Detecting Permafrost Disturbances in the Arctic;IEEE Transactions on Geoscience and Remote Sensing;2024
5. Deep Learning Methods for Semantic Segmentation in Remote Sensing with Small Data: A Survey;Remote Sensing;2023-10-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3