Using LightGBM with SHAP for predicting and analyzing traffic accidents severity

Author:

Li Jinqiang1,Guo Yuying1,Li Li1,Liu Xiaofeng2,Wang Runmin3

Affiliation:

1. Chang’an University,School of Electronics and Control Engineering,Xi’an,China

2. Tianjin University of Technology and Education,School of Automotive and Transportation,Tianjin,China

3. Chang’an University Xi’an,School of Information Engineering,China,China

Funder

Natural Science Basic Research Program of Shaanxi Province

Publisher

IEEE

Reference19 articles.

1. Predictive System of Traffic Congestion based on Machine Learning

2. LightGBM: A Highly Efficient Gradient Boosting Decision Tree;ke;Advances in neural information processing systems,2017

3. Short-Term Traffic Flow Prediction Based on Ensemble Machine Learning Strategies

4. Combination predicting model of traffic congestion index in weekdays based on LightGBM-GRU;cheng;Scientific Reports,2022

5. A comparison of statistical learning methods for deriving determining factors of accident occurrence from an imbalanced high resolution dataset

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3