Explainable Deep Convolutional Neural Network for Valvular Heart Diseases Classification Using PCG Signals
Author:
Affiliation:
1. Centre for Biomedical Engineering, IIT Delhi, New Delhi, India
2. Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
Funder
Prime Minister’s Research Fellowship
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/10012124/10121470.pdf?arnumber=10121470
Reference38 articles.
1. A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation
2. Inceptionism: Going deeper into neural networks;mordvintsev,2015
3. DropConnected neural networks trained on time-frequency and inter-beat features for classifying heart sounds
4. Human-recognizable CT image features of subsolid lung nodules associated with diagnosis and classification by convolutional neural networks
5. Towards Domain Invariant Heart Sound Abnormality Detection Using Learnable Filterbanks
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rapid detection and interpretation of heart murmurs using phonocardiograms, transfer learning and explainable artificial intelligence;Health Information Science and Systems;2024-08-24
2. Review of Phonocardiogram Signal Analysis: Insights from the PhysioNet/CinC Challenge 2016 Database;Electronics;2024-08-14
3. A review of evaluation approaches for explainable AI with applications in cardiology;Artificial Intelligence Review;2024-08-09
4. Heart sound diagnosis method based on multi-domain self-learning convolutional computation;Biomedical Signal Processing and Control;2024-08
5. HBNET: A blended ensemble model for the detection of cardiovascular anomalies using phonocardiogram;Technology and Health Care;2024-05-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3