Bearing Remaining Useful Life Prediction Using Federated Learning With Taylor-Expansion Network Pruning
Author:
Affiliation:
1. School of Instrument Science and Engineering, Southeast University, Nanjing, China
2. School of Electrical Engineering and Automation, Anhui University, Hefei, China
Funder
National Key Research and Development Program of China
Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/10012124/10091163.pdf?arnumber=10091163
Reference34 articles.
1. Remaining useful life estimation in prognostics using deep convolution neural networks
2. Gated Dual Attention Unit Neural Networks for Remaining Useful Life Prediction of Rolling Bearings
3. FedRUL: A New Federated Learning Method for Edge-Cloud Collaboration Based Remaining Useful Life Prediction of Machines
4. A novel deep convolutional neural network-bootstrap integrated method for RUL prediction of rolling bearing
5. Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A federated data fusion-based prognostic model for applications with multi-stream incomplete signals;IISE Transactions;2024-07-03
2. Prediction Method of Remaining Useful Life of Antifriction Bearing Based on EBSA-LSTM Network;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25
3. Multi-Scale Dilated Convolutional Auto-Encoder Network for Weak Feature Extraction and Health Condition Detection;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20
4. Blade fouling fault detection based on shaft orbit generative adversarial network;Measurement Science and Technology;2024-05-14
5. A novel framework based on two-stage multi-view feature optimization and improved support vector data description for aeroengine bearing early fault detection;Reliability Engineering & System Safety;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3