Health Indicator Construction Based on Multisensors for Intelligent Remaining Useful Life Prediction: A Reinforcement Learning Approach
Author:
Affiliation:
1. School of Automation and Electrical Engineering, Beihang University, Beijing, China
Funder
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/10012124/10043772.pdf?arnumber=10043772
Reference31 articles.
1. Optimize the Signal Quality of the Composite Health Index via Data Fusion for Degradation Modeling and Prognostic Analysis
2. Integration of data fusion methodology and degradation modeling process to improve prognostics;kaibo;IEEE Trans Autom Sci Eng,2016
3. A Deep Learning Based Data Fusion Method for Degradation Modeling and Prognostics
4. A Shape-Constrained Neural Data Fusion Network for Health Index Construction and Residual Life Prediction
5. Battery data set;saha,2007
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The RUL prediction based on improved Wiener degradation model for wet friction components;Measurement Science and Technology;2024-04-24
2. Remaining Useful Life Prediction of Rolling Bearing Based on Multi-Domain Mixed Features and Temporal Convolutional Networks;Applied Sciences;2024-03-11
3. A physics-informed autoencoder for system health state assessment based on energy-oriented system performance;Reliability Engineering & System Safety;2024-02
4. A novel gear RUL prediction method by diffusion model generation health index and attention guided multi-hierarchy LSTM;Scientific Reports;2024-01-20
5. Degradation Indicator Construction Using Dual-Class Component Feature Fusion Recalibration for Bearing Performance Evaluation;IEEE Sensors Journal;2023-10-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3