A High-Parallelism RRAM-Based Compute-In-Memory Macro With Intrinsic Impedance Boosting and In-ADC Computing
Author:
Affiliation:
1. Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
2. Georgia Institute of Technology, Atlanta, GA, USA
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials
Link
http://xplorestaging.ieee.org/ielx7/6570653/10138050/10070378.pdf?arnumber=10070378
Reference43 articles.
1. 2-Bit-Per-Cell RRAM-Based In-Memory Computing for Area-/Energy-Efficient Deep Learning
2. A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN AI edge processors
3. High-Throughput In-Memory Computing for Binary Deep Neural Networks With Monolithically Integrated RRAM and 90-nm CMOS
4. Analog-to-Digital Converter Design Exploration for Compute-in-Memory Accelerators
5. A fully integrated analog ReRAM based 78.4 TOPS/W compute-in-memory chip with fully parallel MAC computing;liu;IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers,2020
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Write System for Compact RRAM Memory Arrays Based on F-1T1R;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19
2. Enabling intrinsic intelligence, ubiquitous learning and blockchain empowerment for trust and reliability in 6G network evolution;Journal of King Saud University - Computer and Information Sciences;2024-04
3. Boosting RRAM-Based Mixed-Signal Accelerators in FD-SOI Technology for ML Applications;IEEE Journal on Exploratory Solid-State Computational Devices and Circuits;2023-12
4. Special Topic on Nontraditional Devices, Circuits, and Architectures for Energy-Efficient Computing;IEEE Journal on Exploratory Solid-State Computational Devices and Circuits;2023-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3