Deep Learning Framework With Essential Pre-Processing Techniques for Improving Mixed-Gas Concentration Prediction
Author:
Affiliation:
1. Department of Intelligence and Information, Seoul National University, Seoul, South Korea
2. Future Education Research Division, Center for Open Middle and High Schools, Jincheon-gun, South Korea
Funder
National Research Foundation of Korea (NRF) Grant funded by the Korea Government [Ministry of Science and ICT (MSIT)]
Korea Medical Device Development Fund Grant funded by the Korea Government
IITP Grant funded by the Korea Government (MSIT) [Artificial Intelligence Graduate School Program (Seoul National University)]
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10064103.pdf?arnumber=10064103
Reference58 articles.
1. A multi-task learning framework for gas detection and concentration estimation
2. Very deep convolutional networks for large-scale image recognition;simonyan;arXiv 1409 1556,2014
3. Gas recognition method based on the deep learning model of sensor array response map
4. Deep Residual Learning for Image Recognition
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A mixed gas concentration regression prediction method based on RESHA-ALW;Sensors and Actuators B: Chemical;2024-11
2. A Multitask Learning-Based Model for Gas Classification and Concentration Prediction;IEEE Sensors Journal;2024-04-01
3. Intelligent Detection and Odor Recognition of Cigarette Packaging Paper Boxes Based on a Homemade Electronic Nose;Micromachines;2024-03-28
4. Negative Group Delay Predictor Application for CO2 Gas Concentration Real-Time Forecasting;IEEE Sensors Journal;2024-02-01
5. Spatiotemporal Attention Mechanism based Detection Model for Mixed-gas in Electronic Nose Technology;2023 International Conference on Intelligent Communication and Networking (ICN);2023-11-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3