Chip Analysis for Tool Wear Monitoring in Machining: A Deep Learning Approach
Author:
Affiliation:
1. Artificial Intelligence and Intelligent Systems Research Group, School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden
2. Research and Development Team, SECO Tools AB, Västmanland, Sweden
Funder
DIGital Twins for Industrial COGnitive Systems (DIGICOGS) through the Industry 4.0 and Artificial Intelligence
Vinnova Diarienr and the Innovation Program Process Industrial IT and Automation
Cognitive Predictive Maintenance and Quality Assurance using Explainable Ai and Machine Learning
Sweden’s Innovation Agency (VINNOVA) and Mälardalen University
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Link
http://xplorestaging.ieee.org/ielx8/6287639/10380310/10636165.pdf?arnumber=10636165
Reference44 articles.
1. Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments
2. Evaluation of turning with different cooling-lubricating techniques in terms of surface integrity and tribologic properties
3. Intelligent tool wear monitoring and multi-step prediction based on deep learning model
4. Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method
5. Finite Element Modelling of Cutting Forces and Power Consumption in Turning of AISI 420 Martensitic Stainless Steel
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3