Characteristics of Understanding URLs and Domain Names Features: The Detection of Phishing Websites With Machine Learning Methods
Author:
Affiliation:
1. Department of Medical Services and Techniques, Eldivan Medical Services Vocational School, Çankırı Karatekin University, Cankiri, Turkey
2. Department of Computer Engineering, Hacettepe University, Ankara, Turkey
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/9668973/09954369.pdf?arnumber=9954369
Reference42 articles.
1. Phishing Website Detection: An Improved Accuracy through Feature Selection and Ensemble Learning
2. Phishing website detection using machine learning: A review;pujara;Int J Sci Res Comput Sci Eng Inf Technol,2018
3. Advanced evasion attacks and mitigations on practical ML‐based phishing website classifiers
4. Phishing Website Detection With Semantic Features Based on Machine Learning Classifiers
5. Phishing website detection using support vector machines and nature-inspired optimization algorithms
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Detection of adversarial phishing attack using machine learning techniques;Sādhanā;2024-08-08
2. Enhancing Cybersecurity: A Comprehensive Analysis of Machine Learning Techniques in Detecting and Preventing Phishing Attacks with a Focus on Xgboost Algorithm;2024 International Conference on Intelligent Systems for Cybersecurity (ISCS);2024-05-03
3. A Phishing URL Detection Model based on Horse Herd Optimization and Random Forest Algorithms;2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN);2024-05-03
4. Uit-DGAdetector: detect domains generated by algorithms using machine learning;Cluster Computing;2024-03-28
5. Movie recommendation system using content-based & collaborative-based filtering;AIP Conference Proceedings;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3