CNN-LSTM Driving Style Classification Model Based on Driver Operation Time Series Data
Author:
Affiliation:
1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
2. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China
3. BYD Auto Industry Company Ltd., Shenzhen, China
Funder
National Natural Science Foundation of China
Key Research and Development Program of Jiangsu Province
Six Talent Peaks Project of Jiangsu Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10044645.pdf?arnumber=10044645
Reference32 articles.
1. Estimating risk levels of driving scenarios through analysis of driving styles for autonomous vehicles;xu;arXiv 1904 10176,2019
2. Driving Style Analysis Using Primitive Driving Patterns With Bayesian Nonparametric Approaches
3. Two-layer pointer model of driving style depending on the driving environment
4. An online estimation of driving style using data-dependent pointer model
5. Isotropic Self-supervised Learning for Driver Drowsiness Detection With Attention-based Multimodal Fusion
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Synthetic data generation using Copula model and driving behavior analysis;Ain Shams Engineering Journal;2024-09
2. Improving Driving Style in Connected Vehicles via Predicting Road Surface, Traffic, and Driving Style;Applied Sciences;2024-05-03
3. A novel time series classification for multivariate data using improved deep belief-recurrent neural network with optimal dynamic time warping;MATEC Web of Conferences;2024
4. Is Driving Style Consistent? Quantitative Analysis of the Impact of the Freight Task Characteristics on Driving Styles by Developing Dss Method;2024
5. Driver behavior analysis in diverging area based on driving simulation;Proceedings of the 2023 3rd International Conference on Big Data, Artificial Intelligence and Risk Management;2023-11-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3