Smart Packet Transmission Scheduling in Cognitive IoT Systems: DDQN Based Approach

Author:

Salh Adeeb1,Audah Lukman1,Alhartomi Mohammed A.2ORCID,Kim Kwang Soon3ORCID,Alsamhi Saeed Hamood4ORCID,Almalki Faris A.5ORCID,Abdullah Qazwan1ORCID,Saif Abdu6ORCID,Algethami Haneen7ORCID

Affiliation:

1. Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, Malaysia

2. Department of Electrical Engineering, University of Tabuk, Tabuk, Saudi Arabia

3. School of Electrical and Electronics Engineering, Yonsei University, Seodaemun-gu, Seoul, South Korea

4. SRI, Athlone Institute of Technology, Technical University of the Shannon: Midlands Midwest, Athlone, Westmeath, Ireland

5. Department of Computer Engineering, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia

6. Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia

7. Department of Computer Science, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia

Funder

Universiti Tun Hussein Onn Malaysia

University of Tabuk, Saudi Arabia

Deanship of Scientific Research at Taif University, Saudi Arabia, through Taif University Researchers Supporting Project

European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie

Research Grant from Science Foundation Ireland (SFI) through thr Ireland’s European Structural and Investment Funds Programs and the European Regional Development Fund

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering

Reference37 articles.

1. Distributional reinforcement learning with quantile regression;dabney;Proc 32nd AAAI Conf Artif Intell (AAAI),2018

2. Distributed distributional deterministic policy gradients;barth-maron;arXiv 1804 08617,2018

3. A distributional perspective on reinforcement learning;bellemare;Proc 34th Int Conf Mach Learn (ICML),2017

4. Reinforcement learning with replacing eligibility tracess;sutton;Mach Learn,1996

5. Diversity and delay performance of max link selection relay cooperation systems over non-identical Nakagami-m fading channels

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3