Spatial-Temporal Recurrent Graph Neural Networks for Fault Diagnostics in Power Distribution Systems
Author:
Affiliation:
1. National Renewable Energy Laboratory, Golden, CO, USA
2. Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY, USA
3. New York Power Authority, White Plains, NY, USA
Funder
U.S. Office of Naval Research
National Science Foundation-Algorithms for Modern Power Systems
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
https://ieeexplore.ieee.org/ielam/6287639/10005208/10119158-aam.pdf
Reference57 articles.
1. Application of Smart Meters in High Impedance Fault Detection on Distribution Systems
2. Intelligent Time-Adaptive Transient Stability Assessment System
3. Data analysis and management for optimal application of an advanced ML-based fault location algorithm for low voltage grids
4. Demystifying Learning Rate Policies for High Accuracy Training of Deep Neural Networks
5. Fault Detection for Low-Voltage Residential Distribution Systems With Low-Frequency Measured Data
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Aperiodic small signal stability method for detection and mitigation of cascading failures in smart grids;Results in Engineering;2024-09
2. Non-intrusive fault detection in shipboard power systems using wavelet graph neural networks;Measurement: Energy;2024-09
3. An Improved Graph Deviation Network for Chiller Fault Diagnosis by Integrating the Sparse Cointegration Analysis and the Convolutional Block Attention Mechanism;Energies;2024-08-13
4. Multi-graph attention fusion graph neural network for remaining useful life prediction of rolling bearings;Measurement Science and Technology;2024-07-22
5. Fault classification and localization in microgrids: Leveraging discrete wavelet transform and multi-machine learning techniques considering single point measurements;Electric Power Systems Research;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3