Optimizing CNN Hyperparameters for Blastocyst Quality Assessment in Small Datasets
Author:
Affiliation:
1. Department of Electrical Engineering, Universitas Indonesia, Depok, Indonesia
2. School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
Funder
Universitas Indonesia through the Hibah Publikasi Terindeks Internasional (PUTI) Kolaborasi Internasional (KI) (2Q2) Scheme
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/9668973/09850986.pdf?arnumber=9850986
Reference44 articles.
1. Adam: A method for stochastic optimization;kingma;Proc 3rd Int Conf Learn Represent,2015
2. How to evaluate an agent’s behavior to infrequent events?—Reliable performance estimation insensitive to class distribution;straube;Frontiers Comput Neurosci,2014
3. Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring
4. Clinical pregnancy is significantly associated with the blastocyst width and area: a time-lapse study
5. A KNN-based classification algorithm for growth stages of Haematococcus pluvialis
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A generalized AI system for human embryo selection covering the entire IVF cycle via multi-modal contrastive learning;Patterns;2024-07
2. A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks;Decision Analytics Journal;2024-06
3. Multimodal Local Representation Learning for Multi-Task Blastocyst Assessment;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27
4. Advancing Embryo Selection: A Comparative Study of State-of-the-Art Deep Learning Models for IVF Embryo Quality Assessment;2024-03-05
5. An Efficient Deep Learning Model for Embryo Classification;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3