Diagnosis of Malaria Using Double Hidden Layer Extreme Learning Machine Algorithm With CNN Feature Extraction and Parasite Inflator

Author:

Omaer Faruq Goni Md.1ORCID,Mondal Md. Nazrul Islam2,Islam S. M. Riazul3ORCID,Nahiduzzaman Md.1ORCID,Robiul Islam Md.1ORCID,Anower Md. Shamim4ORCID,Kwak Kyung-Sup5ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh

2. Department of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh

3. Department of Computer Science, University of Huddersfield, Huddersfield, U.K.

4. Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh

5. Department of Information and Communication Engineering, Inha University, Incheon, South Korea

Funder

National Research Foundation of Korea-Grant

Korean Government

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer-Aided Diagnosis Systems for Automatic Malaria Parasite Detection and Classification: A Systematic Review;Electronics;2024-08-11

2. Malaria Parasite Detection using 2D CNN;2024 International Conference on Inventive Computation Technologies (ICICT);2024-04-24

3. Thermal Runaway Detection of Lithium-ion Battery Based on SE-Res-LSTM;2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE);2024-03-01

4. A Review on Computational Methods Based on Deep Learning and Transfer Learning Techniques for Malaria Detection;2024 10th International Conference on Automation, Robotics and Applications (ICARA);2024-02-22

5. Optimization Strategy of Classification Model Based on Weighted Implicit Optimal Extreme Learning Machine;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3