Contrastive Learning for Action Assessment Using Graph Convolutional Networks With Augmented Virtual Joints

Author:

Joung Chung-In1ORCID,Byun Seunghwan1,Baek Seungjun1ORCID

Affiliation:

1. Korea University, Seongbuk-gu, South Korea

Funder

National Research Foundation of Korea (NRF) Grant through the Ministry of Science and ICT (MSIT), Korea Government

Korea Medical Device Development Fund grant funded by the Korea Government

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering

Reference47 articles.

1. Semi-supervised classification with graph convolutional networks;kipf;Proc 5th Int Conf Learn Represent,2017

2. Spatiotemporal Contrastive Video Representation Learning

3. Supervised contrastive learning;khosla;Proc Adv Neural Inf Process Syst,2020

4. Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GYMetricPose: A light-weight angle-based graph adaptation for action quality assessment;2024 IEEE 37th International Symposium on Computer-Based Medical Systems (CBMS);2024-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3