Deep Learning Based Cross Domain Sentiment Classification for Urdu Language
Author:
Affiliation:
1. Department of Computer Science, COMSATS University Islamabad–Lahore Campus, Lahore, Pakistan
2. Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, South Korea
Funder
Basic Science Research Program through the National Research Foundation of Korea (NRF) by the Ministry of Education
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/9668973/09895382.pdf?arnumber=9895382
Reference45 articles.
1. Sentiment analysis of online food reviews using big data analytics;ahmed;Elementary Education Online,2021
2. Sentiment Analysis Approach for Analyzing iPhone Release using Support Vector Machine
3. A hybrid Persian sentiment analysis framework: Integrating dependency grammar based rules and deep neural networks
4. UTSA: Urdu Text Sentiment Analysis Using Deep Learning Methods
5. Deep Sentiment Analysis Using CNN-LSTM Architecture of English and Roman Urdu Text Shared in Social Media
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Aspect-based sentiment analysis in Urdu language: resource creation and evaluation;Neural Computing and Applications;2024-08-28
2. A Sentiment Analysis Approach for Exploring Customer Reviews of Online Food Delivery Services: A Greek Case;Digital;2024-08-17
3. Sentiment Analysis in Low-Resource Settings: A Comprehensive Review of Approaches, Languages, and Data Sources;IEEE Access;2024
4. Revolutionizing Urdu Sentiment Analysis: Harnessing the Power of XLM-R and GPT-2;IEEE Access;2024
5. Sentiment Analysis Based on Urdu Reviews Using Hybrid Deep Learning Models;Applied Computer Systems;2023-12-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3