Direct Short-Term Net Load Forecasting Based on Machine Learning Principles for Solar-Integrated Microgrids
Author:
Affiliation:
1. Department of Electrical and Computer Engineering, PV Technology Laboratory, FOSS Research Centre for Sustainable Energy, University of Cyprus, Nicosia, Cyprus
Funder
European Regional Development Fund and the Republic of Cyprus through the Cyprus Research and Innovation Foundation (RIF) in the Framework of the Project ‘‘ELECTRA’’
European Union—NextGenerationEU
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10252050.pdf?arnumber=10252050
Reference53 articles.
1. A Probabilistic Competitive Ensemble Method for Short-Term Photovoltaic Power Forecasting
2. Short-term forecasting of power production in a large-scale photovoltaic plant
3. Machine Learning Based PV Power Generation Forecasting in Alice Springs
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A holistic framework for the optimal design and operation of electricity, heating, cooling and hydrogen technologies in buildings;Applied Energy;2024-09
2. Direct short-term net load forecasting in renewable integrated microgrids using machine learning: A comparative assessment;Sustainable Energy, Grids and Networks;2024-03
3. Analyzing the Performance of Direct and Indirect Net Load Forecasting Strategies Under Varying Penetration Levels of PV and Wind Power;2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS);2024-01-28
4. Material and Device Design of Flexible Perovskite Solar Cells for Next‐Generation Power Supplies;Advanced Materials;2024-01-26
5. Short-Term Load Forecasting via a Multi-Layer Network Based on Feature Weight Optimization;2023 IEEE International Conference on Energy Internet (ICEI);2023-10-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3