Solar Radiation Forecasting Based on the Hybrid CNN-CatBoost Model
Author:
Affiliation:
1. Department of Applied Statistics, Chung-Ang University, Seoul, South Korea
2. Department of Short-Term Demand Forecasting, Korea Power Exchange, Naju, South Korea
Funder
Korea Power eXchange Research Grants in 2023
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10040681.pdf?arnumber=10040681
Reference30 articles.
1. Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons
2. Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China
3. Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models
4. Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
5. A study on solar irradiance forecasting with weather variables;kim;Korean Journal of Applied Statistics,2017
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multisource information fusion for real-time prediction and multiobjective optimization of large-diameter slurry shield attitude;Reliability Engineering & System Safety;2024-10
2. Deep learning hybrid models with multivariate variational mode decomposition for estimating daily solar radiation;Alexandria Engineering Journal;2024-10
3. Order Demand Forecasting Through Customer Behavior and Seasonal Pattern;2024 International Conference on Science Technology Engineering and Management (ICSTEM);2024-04-26
4. Life cycle assessment and forecasting for 30kW solar power plant using machine learning algorithms;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-03
5. Global horizontal irradiance prediction model considering the effect of aerosol optical depth based on the Informer model;Renewable Energy;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3