Research on Fault Location in DC Distribution Network Based on Adaptive Artificial Bee Colony Slime Mould Algorithm
Author:
Affiliation:
1. State Grid Hebei Electric Power Research Institute, Shijiazhuang, China
2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University (Baoding), Baoding, China
Funder
Science and Technology Project of State Grid Corporation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10155120.pdf?arnumber=10155120
Reference21 articles.
1. Chaos-opposition-enhanced slime mould algorithm for minimizing the cost of energy for the wind turbines on high-altitude sites
2. An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection
3. EOSMA: An Equilibrium Optimizer Slime Mould Algorithm for Engineering Design Problems
4. Normalized square difference based multilevel thresholding technique for multispectral images using leader slime mould algorithm
5. Fault location method of active distribution network based on improved artificial bee colony algorithm
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Gnn-Enhanced Ant Colony Optimization for Security Strategy Orchestration;Symmetry;2024-09-10
2. Application of artificial bee colony algorithm based on homogenization mapping and collaborative acquisition control in network communication security;PLOS ONE;2024-07-10
3. A novel fault location method for the active distribution network based on dynamic quantum genetic algorithm;Electrical Engineering;2024-02-08
4. Advances in Slime Mould Algorithm: A Comprehensive Survey;Biomimetics;2024-01-04
5. RFID Network Planning of Smart Factory Based on Swarm Intelligent Optimization Algorithm: A Review;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3