A Nested Attention Guided UNet++ Architecture for White Matter Hyperintensity Segmentation
Author:
Affiliation:
1. The Third Affiliated Hospital of Soochow University, Changzhou, China
2. School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
Funder
Science and Technology Bureau of Changzhou
Key Research and Development Program (Applied Basic Research) of Changzhou, China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10138414.pdf?arnumber=10138414
Reference32 articles.
1. DeepAtlas: Joint Semi-supervised Learning of Image Registration and Segmentation
2. Brain atlas guided attention U-Net for white matter hyperintensity segmentation;zhang;Amia Joint Summits Transl Sci,2021
3. U-Net: Convolutional networks for biomedical image segmentation;ronneberger;Proc Int Conf Med Image Comput Comput -Assist Intervent,2015
4. Probabilistic Atlases to Enforce Topological Constraints
5. Adam: A method for stochastic optimization;kingma;arXiv 1412 6980,2014
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Brain hyperintensities: automatic segmentation of white matter hyperintensities in clinical brain MRI images using improved deep neural network;The Journal of Supercomputing;2024-04-04
2. Models to Identify Small Brain White Matter Hyperintensities Lesions;2024
3. Segmentation of White Matter Lesions in MRI Images Using Optimization-Based Deep Neural Network;Fourth International Conference on Image Processing and Capsule Networks;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3