Fault Diagnosis of Elevator Doors Using Control State Information

Author:

Chae Hyun,Lee Jae Eung,Oh Ki-YongORCID

Funder

Chung-Ang University Graduate Research Scholarship in 2020

Research Fund of Hanyang University

Core Technology Development Project of Machinery Industry through the Development of Elevator Operation Management Technology Based on Predictive Preservation

Ministry of Trade, Industry & Energy

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science

Reference49 articles.

1. Diversity-aware classifier ensemble selection via f-score

2. Integrating binding site predictions using non-linear classification methods;sun;Proc Int Workshop Deterministic Stat Methods Mach Learn,2004

3. Active sensing using impedance-based ARX models and extreme value statistics for damage detection

4. A statistical learning framework for the intelligent imputation of offshore wind farm missing scada data;liu;Proc 8th Renew Power Gener Conf (RPG),2019

5. Reducing the dimensionality of data with neural networks;hinton;Science,2006

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Fault Prediction Method of Elevator Door System Based on Transfer Learning;Sensors;2024-03-27

2. Fault Prognostics of Elevator Door System Based on LSTM-GNN;2023 Global Reliability and Prognostics and Health Management Conference (PHM-Hangzhou);2023-10-12

3. Traction Machine State Recognition Method Based on DPCA Algorithm and Convolution Neural Network;Sensors;2023-07-24

4. Application of Parity Relation in Elevator Fault Diagnosis;2023 35th Chinese Control and Decision Conference (CCDC);2023-05-20

5. Independent and Non-Invasive State Detection for Elevator Based on Total Current Consumption;2022 International Conference on Computational Science and Computational Intelligence (CSCI);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3