Classification of Power Quality Disturbance Using Segmented and Modified S-Transform and DCNN-MSVM Hybrid Model

Author:

Liu Mingping1ORCID,Chen Yue2,Zhang Zhen1,Deng Suhui1ORCID

Affiliation:

1. School of Information Engineering, Nanchang University, Nanchang, China

2. School of Qianhu, Nanchang University, Nanchang, China

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province of China

Interdisciplinary Innovation Fund of Natural Science, Nanchang University

National College Students' Innovation and Entrepreneurship Training Program

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering

Reference38 articles.

1. Theory of communication;gabor;J Inst Elec Eng,1946

2. An efficient algorithm for atomic decomposition of power quality disturbance signals using convolutional neural network

3. An advanced genetic algorithm with improved support vector machine for multi-class classification of real power quality events;choudhary;Electr Power Syst Res,2021

4. A comparison of methods for multiclass support vector machines

5. Power quality disturbance classification under noisy conditions using adaptive wavelet threshold and DBN-ELM hybrid model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3