Efficient Reinforcement Learning-Based Transmission Control for Mitigating Channel Congestion in 5G V2X Sidelink
Author:
Affiliation:
1. Department of Computer Science and Information Engineering, National Chung Cheng University, Minhsiung, Chiayi, Taiwan
Funder
Ministry of Science and Technology of Taiwan
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/9668973/09793684.pdf?arnumber=9793684
Reference44 articles.
1. V2X-Based Vehicular Positioning: Opportunities, Challenges, and Future Directions
2. RAN Information-Assisted TCP Congestion Control Using Deep Reinforcement Learning With Reward Redistribution
3. Simultaneous Data Rate and Transmission Power Adaptation in V2V Communications: A Deep Reinforcement Learning Approach
4. Dynamic Channel Access and Power Control in Wireless Interference Networks via Multi-Agent Deep Reinforcement Learning
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An optimal resource assignment and mode selection for vehicular communication using proximal on-policy scheme;Alexandria Engineering Journal;2024-11
2. Resource allocation in V2X communication: State-of-the-art and research challenges;Physical Communication;2024-06
3. Distributed Joint Congestion Control for V2X Using Multi-Agent Reinforcement Learning;2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN);2024-05-05
4. Analysis of Machine Learning Based Noise Reduction in Cellular Mobile Communication;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15
5. Enhancing Sidelink 5G V2V Communication: A Distributed Probabilistic Congestion Control for Dynamic Resource Allocation;2023 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS);2023-12-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3