V-SKP: Vectorized Kernel-Based Structured Kernel Pruning for Accelerating Deep Convolutional Neural Networks

Author:

Koo Kwanghyun1,Kim Hyun1ORCID

Affiliation:

1. Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, Seoul, South Korea

Funder

Ministry of Science and ICT (MSIT), South Korea, through the Information Technology Research Center (ITRC) Support Program

Institute for Information and Communications Technology Planning and Evaluation

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering

Reference43 articles.

1. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding;han;arXiv 1510 00149 [cs],2015

2. ImageNet Large Scale Visual Recognition Challenge

3. The lottery ticket hypothesis: Finding sparse, trainable neural networks;frankle;arXiv 1803 03635,2018

4. PPT-KP: Pruning Point Training-based Kernel Pruning for Deep Convolutional Neural Networks

5. DSD: Dense-sparse-dense training for deep neural networks;han;arXiv 1607 04381,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of FPGA and ASIC designs for transformer inference acceleration and optimization;Journal of Systems Architecture;2024-10

2. SRU-Q: Hardware-friendly Stochastic Rounding Unit-based Gradient Quantization for CNN Training;2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS);2024-04-22

3. PF-Training: Parameter Freezing for Efficient On-Device Training of CNN-based Object Detectors in Low-Resource Environments;2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS);2024-04-22

4. ACC: Adaptive Compression Framework for Efficient On-device CNN Training;2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS);2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3