Dynamic Modeling With Integrated Concept Drift Detection for Predicting Real-Time Energy Consumption of Industrial Machines
Author:
Affiliation:
1. Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
2. Department of Information Systems Engineering, Sakarya University, Sakarya, Turkey
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/9668973/09905563.pdf?arnumber=9905563
Reference43 articles.
1. Handling Concept Drifts in Regression Problems – the Error Intersection Approach
2. Sequential Pattern Mining Method for Predictive Maintenance of Large Mining Trucks
3. Machine Learning and Deep Learning Methods in Mining Operations: a Data-Driven SAG Mill Energy Consumption Prediction Application
4. Predictive Modelling for Energy Consumption in Machining Using Artificial Neural Network
5. Energy Consumption Modelling Using Deep Learning Technique — A Case Study of EAF
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting Energy Consumption for Hybrid Energy Systems toward Sustainable Manufacturing: A Physics-Informed Approach Using Pi-MMoE;Sustainability;2024-08-23
2. Short-term Load Forecasting and Regime Switching Detection Based on Normalized Causal Entropy Boosting;Journal of Physics: Conference Series;2024-07-01
3. A Bayesian Optimization Approach of Ensemble and Decision Tree Learning Applied to Industrial Energy Consumption Prediction;2023 15th IEEE International Conference on Industry Applications (INDUSCON);2023-11-22
4. SABeDM: a sliding adaptive beta distribution model for concept drift detection in a dynamic environment;Knowledge and Information Systems;2023-11-20
5. Integrated Bio-Inspired Approach for Industrial Energy Management Systems;2023 International Conference for Technological Engineering and its Applications in Sustainable Development (ICTEASD);2023-11-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3